题目内容

17.已知变量x、y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].

分析 令x+1=m,3x+y=n,代入约束条件后转化关于m,n的不等式组,数形结合得到最优解,求出最优解的坐标,由$\frac{n}{m}$的几何意义得答案.

解答 解:令x+1=m,3x+y=n,得x=m-1,y=n-3m+3,代入$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,
得$\left\{\begin{array}{l}{4m-n-6≤0}\\{5m-2n≤0}\\{3m-n-1≥0}\end{array}\right.$,作出可行域如图,

联立$\left\{\begin{array}{l}{3m-n-1=0}\\{4m-n-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=5}\\{n=14}\end{array}\right.$,即C(5,14),
u=$\frac{3x+y}{x+1}$=$\frac{n}{m}$的几何意义为可行域内的动点与原点连线的斜率,
∵${k}_{OA}={k}_{AB}=\frac{5}{2}$,${k}_{OC}=\frac{14}{5}$,
∴u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].
故答案为:[$\frac{5}{2},\frac{14}{5}$].

点评 本题考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网