题目内容
17.已知变量x、y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].分析 令x+1=m,3x+y=n,代入约束条件后转化关于m,n的不等式组,数形结合得到最优解,求出最优解的坐标,由$\frac{n}{m}$的几何意义得答案.
解答 解:令x+1=m,3x+y=n,得x=m-1,y=n-3m+3,代入$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,
得$\left\{\begin{array}{l}{4m-n-6≤0}\\{5m-2n≤0}\\{3m-n-1≥0}\end{array}\right.$,作出可行域如图,![]()
联立$\left\{\begin{array}{l}{3m-n-1=0}\\{4m-n-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=5}\\{n=14}\end{array}\right.$,即C(5,14),
u=$\frac{3x+y}{x+1}$=$\frac{n}{m}$的几何意义为可行域内的动点与原点连线的斜率,
∵${k}_{OA}={k}_{AB}=\frac{5}{2}$,${k}_{OC}=\frac{14}{5}$,
∴u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].
故答案为:[$\frac{5}{2},\frac{14}{5}$].
点评 本题考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.
练习册系列答案
相关题目
7.已知椭圆mx2+4y2=1的离心率为$\frac{{\sqrt{2}}}{2}$,则实数m等于( )
| A. | 2 | B. | 2或$\frac{8}{3}$ | C. | 2或6 | D. | 2或8 |
5.设集合U={1,2,3,4,5,6},A={x∈N|1≤x≤3},则∁UA=( )
| A. | U | B. | {1,2,3} | C. | {4,5,6} | D. | {1,3,4,5,6} |
2.已知x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y≤3\end{array}$,若z=2x+y的最大值和最小值分别为a,b,则a+b=( )
| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
15.已知f(x)是定义在R上的奇函数,且f(x-2)=f(x+2),当0<x<2时,f(x)=1-log2(x+1),则当0<x<4时,不等式(x-2)f(x)>0的解集是( )
| A. | (0,1)∪(2,3) | B. | (0,1)∪(3,4) | C. | (1,2)∪(3,4) | D. | (1,2)∪(2,3) |