题目内容
(2013•闵行区二模)已知△ABC的重心为O,AC=6,BC=7,AB=8,则
•
=
| AO |
| BC |
-
| 28 |
| 3 |
-
.| 28 |
| 3 |
分析:利用重心的性质和向量的运算法则可得可得
=
×
(
-
),再利用数量积的运算性质即可得出.
| AO |
| 2 |
| 3 |
| 1 |
| 2 |
| AB |
| AC |
解答:解:设D为边BC的中点,
如图所示,则
=
(
+
).
根据重心的性质可得
=
=
×
(
+
)=
(
+
).
∴
•
=
(
+
)•(
-
)=
(
2-
2)=
(62-82)=-
.
故答案为-
.
| AD |
| 1 |
| 2 |
| AB |
| AC |
根据重心的性质可得
| AO |
| 2 |
| 3 |
| AD |
| 2 |
| 3 |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 3 |
| AB |
| AC |
∴
| AO |
| BC |
| 1 |
| 3 |
| AB |
| AC |
| AC |
| AB |
| 1 |
| 3 |
| AC |
| AB |
| 1 |
| 3 |
| 28 |
| 3 |
故答案为-
| 28 |
| 3 |
点评:熟练掌握重心的性质和向量的运算法则、数量积的运算性质是解题的关键.
练习册系列答案
相关题目