题目内容
如图,在四棱锥S—ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
![]()
(1)求证:AM//平面SCD;
(2)求平面SCD与平面SAB所成的二面角的余弦值;
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求
的最大值.
练习册系列答案
相关题目
题目内容
如图,在四棱锥S—ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
![]()
(1)求证:AM//平面SCD;
(2)求平面SCD与平面SAB所成的二面角的余弦值;
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求
的最大值.