题目内容

“a>3”是函数f(x)=ax+3在[-1,2]上存在零点”的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件
A
分析:由“a>3”推出“函数f(x)=ax+3在[-1,2]上存在零点”;而由“函数f(x)=ax+3在[-1,2]上存在零点”,不能推出“a>3”,从而得到结论.
解答:当a>3时,可得函数f(x)=ax+3的零点为 x=,且 0>≥-1,故函数f(x)=ax+3在[-1,2]上存在零点,故充分性成立.
当函数f(x)=ax+3在[-1,2]上存在零点时,可得-1≤≤2,解得a≥3 或a≤-,故必要性不成立.
综上可得,“a>3”是“函数f(x)=ax+3在[-1,2]上存在零点”的充分不必要条件,
故选A.
点评:主要考查充分条件、必要条件、充要条件的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网