题目内容
函数f(x)、f(x+2)均为偶函数,且当x∈[0,2]时,f(x)是减函数,设a=f(log8
),b=f(7.5),c=f(-5),则a、b、c的大小关系是( )
| 1 |
| 2 |
| A.b>a>c | B.a>c>b | C.a>b>c | D.c>a>b |
由题意“函数f(x)、f(x+2)均为偶函数”可知,
f(x+2)=f(-x+2)=f(-(2-x))=f(x-2)
?f(x+2)=f(x-2)
?f((x-2)+4)=f(x-2)
?f(t+4)=f(t)
∴f(x)的周期为t=4.
从而a=f(log8
)=f(-
lo
)=f(-
)=f(
),
b=f(7.5)=f(8-0.5)=f(-0.5)=f(0.5),
c=f(-5)=f(5)=f(4+1)=f(1),
∵0<
<0.5<1<2?a>b>c.
故选C.
f(x+2)=f(-x+2)=f(-(2-x))=f(x-2)
?f(x+2)=f(x-2)
?f((x-2)+4)=f(x-2)
?f(t+4)=f(t)
∴f(x)的周期为t=4.
从而a=f(log8
| 1 |
| 2 |
| 1 |
| 3 |
| g | 22 |
| 1 |
| 3 |
| 1 |
| 3 |
b=f(7.5)=f(8-0.5)=f(-0.5)=f(0.5),
c=f(-5)=f(5)=f(4+1)=f(1),
∵0<
| 1 |
| 3 |
故选C.
练习册系列答案
相关题目