题目内容
【题目】如图,
平面
,
,点
分别为
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)若
为线段
上的点,且直线
与平面
所成的角为
,求线段
的长.
【答案】(Ⅰ)证明见解析;(Ⅱ)
;(Ⅲ)
.
【解析】
(Ⅰ)连接
,证得
,利用用线面判定定理,即可得到
;
(Ⅱ)以
为原点,分别以
的方向为
轴,
轴,
轴的正方向的空间直角坐标系,求得平面
和平面
法向量,利用向量的夹角公式,即可求解.
(Ⅲ)设
,则
,从而
,
由(Ⅱ)知平面
的法向量为
,利用向量的夹角公式,得到关于
的方程,即可求解.
(Ⅰ)连接
,因为
,所以
,又因为
,所以
为平行四边形.
由点
和
分别为
和
的中点,可得
且
,
因为
为
的中点,所以
且
,可得
且
,即四边形
为平行四边形,所以
,又
,
,
所以
.
(Ⅱ)因为
,
,可以建立以
为原点,分别以
的方向为
轴,
轴,
轴的正方向的空间直角坐标系.
依题意可得
,
.
![]()
设
为平面
的法向量,
则
,即
,不妨设
,可得![]()
设
为平面
的法向量,
则
,即
,不妨设
,可得
.
,于是
.
所以,二面角
的正弦值为
.
(Ⅲ)设
,即
,则
.
从而
.
由(Ⅱ)知平面
的法向量为
,
由题意,
,即
,
整理得
,解得
或
,
因为
所以
,所以
.
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各50户贫困户为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x,将指标x按照
分成五组,得到如图所示的频率分布直方图.
![]()
规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当
时,认定该户为“低收入户”;当
时,认定该户为“亟待帮助户”,已知此次调查中甲村的“绝对贫困户”占甲村贫困户的24%.
(1)完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关;
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)若两村“低收入户”中乙村“低收入户”占比为
,两村“亟待帮助户”中乙村“亟待帮助户”占比为
,且乙村贫困指标在
上的户数成等差数列,试估计乙村贫困指标x的平均值
.
附:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 |
| 2.072 | 2.706 | 3.841 | 5.024 |