题目内容

4.已知a,b,c>0,$\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{{b}^{2}}{1+{b}^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$=1,证明.αbc≤$\frac{\sqrt{2}}{4}$.

分析 先用柯西不等式得出ab+bc+ac≤$\frac{3}{2}$,再用基本不等式ab+bc+ac≥3$\root{3}{ab•bc•ac}$,得出abc≤$\frac{\sqrt{2}}{4}$.

解答 证明:根据柯西不等式(n=3)得,
[(1+a2)+(1+b2)+(1+c2)]•($\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{{b}^{2}}{1+{b}^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$)≥(a+b+c)2
即a2+b2+c2+3≥(a+b+c)2
整理得,ab+bc+ac≤$\frac{3}{2}$,
再由基本不等式:ab+bc+ac≥3$\root{3}{ab•bc•ac}$,
两边立方得,a2b2c2≤$(\frac{ab+bc+ac}{3})^3$≤$\frac{1}{8}$,
所以,abc≤$\sqrt{\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
即abc≤$\frac{\sqrt{2}}{4}$,证毕.

点评 本题主要考查了运用柯西不等式,基本不等式证明不等式,适当凑配和合理放缩是证明的关键,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网