题目内容
【题目】若函数y=f(x)的定义域是[0,2],则函数y=f(2x﹣1)的定义域是( )
A.{x|0≤x≤1}
B.{x|0≤x≤2}
C.{x|
≤x≤
}
D.{x|﹣1≤x≤3}
【答案】C
【解析】解:∵函数y=f(x)的定义域是[0,2],
∴由0≤2x﹣1≤2,解得
.
∴函数y=f(2x﹣1)的定义域是{x|
}.
所以答案是:C.
【考点精析】关于本题考查的函数的定义域及其求法,需要了解求函数的定义域时,一般遵循以下原则:①
是整式时,定义域是全体实数;②
是分式函数时,定义域是使分母不为零的一切实数;③
是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能得出正确答案.
练习册系列答案
相关题目
【题目】已知{an}是等比数列,满足a2=6,a3=﹣18,数列{bn}满足b1=2,且{2bn+an}是公差为2的等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.