题目内容
(2013•梅州一模)已知函数f(x)=
x2+
x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn;
(3)令cn=
+
,证明:2n<c1+c2+…+cn<2n+
.
| 1 |
| 2 |
| 3 |
| 2 |
(1)求数列{an}的通项公式an;
(2)令bn=
| an |
| 2n-1 |
(3)令cn=
| an |
| an+1 |
| an+1 |
| an |
| 1 |
| 2 |
分析:(1)利用an=
即可求出an;
(2)利用“错位相减法”即可得出;
(3)利用基本不等式的性质和“裂项求和”即可得出.
|
(2)利用“错位相减法”即可得出;
(3)利用基本不等式的性质和“裂项求和”即可得出.
解答:解:(1)∵点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
∴Sn=
n2+
n,
∴当n=1时,a1=S1=
×12+
×1=2;
当n≥2时,an=Sn-Sn-1=
n2+
n-[
(n-1)2+
(n-1)]=n+1.
当n=1时,也适合上式,
因此an=n+1(n∈N*).
(2)由(1)可得:bn=
=
.
∴Tn=
+
+
+…+
+
,
Tn=1+
+…+
+
,
两式相减得
Tn=2+
+
+…+
-
=1+
-
=3-
-
∴Tn=6-
.
(3)证明:由cn=
+
=
+
>2
=2,
∴c1+c2+…+cn>2n.
又cn=
+
=2+
-
,
∴c1+c2+…+cn=2n+[(
-
)+(
-
)+…+(
-
)]=2n+
-
<2n+
.
∴2n<c1+c2+…+cn<2n+
成立.
∴Sn=
| 1 |
| 2 |
| 3 |
| 2 |
∴当n=1时,a1=S1=
| 1 |
| 2 |
| 3 |
| 2 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
当n=1时,也适合上式,
因此an=n+1(n∈N*).
(2)由(1)可得:bn=
| an |
| 2n-1 |
| n+1 |
| 2n-1 |
∴Tn=
| 2 |
| 20 |
| 3 |
| 21 |
| 4 |
| 22 |
| n |
| 2n-2 |
| n+1 |
| 2n-1 |
| 1 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| n+1 |
| 2n |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
1×(1-
| ||
1-
|
| n+1 |
| 2n |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
∴Tn=6-
| n+3 |
| 2n-1 |
(3)证明:由cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
|
∴c1+c2+…+cn>2n.
又cn=
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴c1+c2+…+cn=2n+[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
∴2n<c1+c2+…+cn<2n+
| 1 |
| 2 |
点评:熟练掌握公式an=
、“错位相减法”、基本不等式的性质和“裂项求和”是解题的关键.
|
练习册系列答案
相关题目