题目内容

5.已知函数f(x)=$\frac{1}{2}$x2-3x+alnx+4(a>0)
(1)若f(x)在其定义域是单调增函数,求实数a的取值范围;
(2)当a=2时,函数y=f(x)在[en,+∞)(n∈Z)有零点,求n的最大值.

分析 (1)利用函数单调,其导函数大于等于0或小于等于0恒成立;二次不等式恒成立,即a≤0,又a≠0,从而得出实数a的取值范围.
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调性,取特殊值,求出n的最大值即可.

解答 解:(1)f′(x)=x-3+$\frac{a}{x}$,
若函数f(x)是定义域(0,+∞)上的单调函数,则只能f′(x)≥0在(0,+∞)上恒成立,
即x-3+$\frac{a}{x}$≥0在(0,+∞)上恒成立,
即只要a≥3x-x2在(0,+∞)上恒成立,
∴实数a的取值范围[$\frac{9}{4}$,+∞).
(2)a=2时,f(x)=$\frac{1}{2}$x2-3x+2lnx+4,
f′(x)=$\frac{{x}^{2}-3x+2}{x}$,
令f′(x)>0,解得:0<x<1或x>2,
令f′(x)<0,解得:1<x<2,
∴f(x)在(0,1)递增,在(1,2)递减,在(2,+∞)递增,
∴f(x)极大值=f(1)=$\frac{3}{2}$>0,f(x)极小值=f(2)=2ln2>0,
故n∈N时,f(x)在[en,+∞)内不存在零点,
当n=-1时,f(e-1)=$\frac{2e-3}{e}$+$\frac{1}{2{e}^{2}}$>0,
n=-2时,f(e-2)=$\frac{1-6{e}^{2}}{2{e}^{4}}$<0,
故在[e-2,e-1]内存在一零点,
故函数f(x)在[en,+∞),(n∈Z)有零点时,n的最大值是-2.

点评 本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的零点,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网