题目内容

已知a+a-1=7,求下列各式的值:
(1)
a
3
2
-a-
3
2
a
1
2
-a-
1
2
; (2)a
1
2
+a-
1
2
; (3)a2-a-2
 &(a>1)
分析:(1)原式=
(a
1
2
)
3
-(a-
1
2
)
3
a
1
2
-a-
1
2
=
(a
1
2
-a-
1
2
)(a+a-1+1)
a
1
2
-a-
1
2
=a+a-1+1=7+1=8

(2)a+a-1=(a
1
2
+a-
1
2
)2-2a
1
2
a-
1
2
=(a
1
2
+a-
1
2
)2-2=7
,由此能求出a
1
2
+a-
1
2

(3)a+a-1=(a
1
2
-a-
1
2
)2+2a
1
2
a-
1
2
=(a
1
2
-a-
1
2
)2+2=7
,由此能求出a2-a-2,(a>1).
解答:解:(1)
a
3
2
-a-
3
2
a
1
2
-a-
1
2
=
(a
1
2
)
3
-(a-
1
2
)
3
a
1
2
-a-
1
2
=
(a
1
2
-a-
1
2
)(a+a-1+1)
a
1
2
-a-
1
2
=a+a-1+1=7+1=8

(2)a+a-1=(a
1
2
+a-
1
2
)2-2a
1
2
a-
1
2
=(a
1
2
+a-
1
2
)2-2=7

a
1
2
+a-
1
2
>0,
a
1
2
+a-
1
2
=3
(3)a+a-1=(a
1
2
-a-
1
2
)2+2a
1
2
a-
1
2
=(a
1
2
-a-
1
2
)2+2=7

∵a>1,
a
1
2
-a-
1
2
=
5

a-a-1=(a
1
2
+a-
1
2
)(a
1
2
-a-
1
2
)

=3
5
a2-a-2
=(a-a-1)(a+a-1
=21
5
点评:本题考查有理数指数幂的化简求值,解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网