题目内容
已知a+a-1=7,求下列各式的值:
(1)
; (2)a
+a-
; (3)a2-a-2
.
(1)
a
| ||||
a
|
| 1 |
| 2 |
| 1 |
| 2 |
|
分析:(1)原式=
=
=a+a-1+1=7+1=8.
(2)a+a-1=(a
+a-
)2-2a
•a-
=(a
+a-
)2-2=7,由此能求出a
+a-
.
(3)a+a-1=(a
-a-
)2+2a
•a-
=(a
-a-
)2+2=7,由此能求出a2-a-2,(a>1).
(a
| ||||
a
|
(a
| ||||
a
|
(2)a+a-1=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)a+a-1=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)
=
=
=a+a-1+1=7+1=8.
(2)a+a-1=(a
+a-
)2-2a
•a-
=(a
+a-
)2-2=7;
∵a
+a-
>0,
∴a
+a-
=3
(3)a+a-1=(a
-a-
)2+2a
•a-
=(a
-a-
)2+2=7
∵a>1,
∴a
-a-
=
,
∴a-a-1=(a
+a-
)(a
-a-
)
=3
a2-a-2
=(a-a-1)(a+a-1)
=21
.
a
| ||||
a
|
(a
| ||||
a
|
(a
| ||||
a
|
(2)a+a-1=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵a
| 1 |
| 2 |
| 1 |
| 2 |
∴a
| 1 |
| 2 |
| 1 |
| 2 |
(3)a+a-1=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵a>1,
∴a
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
∴a-a-1=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=3
| 5 |
=(a-a-1)(a+a-1)
=21
| 5 |
点评:本题考查有理数指数幂的化简求值,解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目