题目内容
若f(x)=
【答案】分析:求出导数f′(x),则f(x)在(-1,+∞)上是减函数等价于-x+
≤0在(-1,+∞)上恒成立,分离参数b后,转化为求函数最值即可,根据二次函数的性质易求函数最值.
解答:解:f′(x)=-x+
,
故f(x)在(-1,+∞)上是减函数等价于-x+
≤0在(-1,+∞)上恒成立,
由x>-1得x+2>0,
原命题成立等价于b≤x2+2x在(-1,+∞)上恒成立,
又y=x2+2x在(-1,+∞)上单调递增,x2+2x>-1,
故b≤-1,
故b的取值范围为(-∞,-1].
点评:本题考查函数的单调性与导数的关系,可导函数f(x)在(a,b)上单调递增的充要条件为f′(x)≥0.
解答:解:f′(x)=-x+
故f(x)在(-1,+∞)上是减函数等价于-x+
由x>-1得x+2>0,
原命题成立等价于b≤x2+2x在(-1,+∞)上恒成立,
又y=x2+2x在(-1,+∞)上单调递增,x2+2x>-1,
故b≤-1,
故b的取值范围为(-∞,-1].
点评:本题考查函数的单调性与导数的关系,可导函数f(x)在(a,b)上单调递增的充要条件为f′(x)≥0.
练习册系列答案
相关题目
若f(x)=-
x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是( )
| 1 |
| 2 |
| A、[-1,+∞) |
| B、(-1,+∞) |
| C、(-∞,-1] |
| D、(-∞,-1) |