题目内容
【题目】已知等差数列
和等比数列
满足
,
,
.
(1)求
的通项公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】试题分析:(1)根据等差数列
的
,
,列出关于首项
、公差
的方程组,解方程组可得
与
的值,从而可得数列
的通项公式;(2)利用已知条件根据题意列出关于首项
,公比
的方程组,解得
、
的值,求出数列
的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
从而
.
【题型】解答题
【结束】
18
【题目】已知命题
:实数
满足
,其中
;命题
:方程
表示双曲线.
(1)若
,且
为真,求实数
的取值范围;
(2)若
是
的充分不必要条件,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】试题分析:
先由命题解
得
;命题
得
,
(1)当
,得命题
,再由
为真,得
真且
真,即可求解
的取值范围.
(2)由
是
的充分不必要条件,则
是
的充分必要条件,根据则
,即可求解实数
的取值范围.
试题解析:
命题
:由题得
,又
,解得
;
命题
:
,解得
.
(1)若
,命题
为真时,
,
当
为真,则
真且
真,
∴
解得
的取值范围是
.
(2)
是
的充分不必要条件,则
是
的充分必要条件,
设
,
,则
;
∴
∴实数
的取值范围是
.
练习册系列答案
相关题目