题目内容
已知函数
【答案】分析:(1)先由真数大于0,解不等式得出函数的定义域,再由奇函数的定义只要判断f(x)和f(-x)的关系即可,也可计算f(x)+f(-x)=0进行判断.
(2)由不等式
,即
.最后利用对数的单调性转化为分式不等式求解即得.
解答:解:(1)定义域
(2分),
x∈(-1,0)∪(0,1)(1分)(直接写出得3分)
(2分)
所以f(x)是奇函数(1分)
(2)
,(1分)
,(1分)
∴
或x>1(2分)
最后不等式的解集是
(2分)
点评:本题考查复合函数的定义域、单调性、奇偶性的判断和证明,难度不大,解题时要注意解对数函数的不等式时,不要忘记其真数为正数这个前提条件.
(2)由不等式
解答:解:(1)定义域
x∈(-1,0)∪(0,1)(1分)(直接写出得3分)
所以f(x)是奇函数(1分)
(2)
∴
最后不等式的解集是
点评:本题考查复合函数的定义域、单调性、奇偶性的判断和证明,难度不大,解题时要注意解对数函数的不等式时,不要忘记其真数为正数这个前提条件.
练习册系列答案
相关题目