题目内容
8.| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.
分析 (Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=$\sqrt{x}$,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;
(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,
(ii)求出预报值得方程,根据函数的性质,即可求出.
解答 解:(Ⅰ)由散点图可以判断,$y=c+d\sqrt{x}$ 适合作为年销售y 关于年宣传费用x 的回归方程类型.…(2分)
(Ⅱ)令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于$\stackrel{∧}{d}$=$\frac{108.6}{1.6}$68,
$\stackrel{∧}{c}$=563-68×6.8=100.6,
所以y关于w的线性回归方程为$\stackrel{∧}{y}$=100.6+68w,
因此y关于x的回归方程为$\stackrel{∧}{y}$=100.6+68$\sqrt{x}$.
(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值$\stackrel{∧}{y}$═100.6+68$\sqrt{49}$=576.6,
年利润z的预报值$\stackrel{∧}{z}$=576.6×0.2-49=66.32,
(ii)根据(Ⅱ)的结果可知,年利润z的预报值$\stackrel{∧}{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
故宣传费用为46.24千元时,年利润的预报值最大.…(12分)
点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.
练习册系列答案
相关题目
19.椭圆$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一点M到直线x+2y-10=0的距离的最小值为( )
| A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 1 |
3.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量,用X表示,那么X的取值为( )
| A. | 0,1 | B. | 0,2 | C. | 1,2 | D. | 0,1,2 |