题目内容

由曲线y=x2,y=x3围成的封闭图形面积为(  )
A、
1
12
B、
1
4
C、
1
3
D、
7
12
分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2-x3)dx即可.
解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]
所求封闭图形的面积为∫01(x2-x3)dx═
1
3
×1-
1
4
×1=
1
12

故选A.
点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网