题目内容
8.若复数z满足(2+i)z=|1-2i|,则复数z所对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算性质、模的计算公式、几何意义即可得出.
解答 解:∵复数z满足(2+i)z=|1-2i|,
∴z=$\frac{|1-2i|}{2+i}$=$\frac{\sqrt{5}(2-i)}{(2+i)(2-i)}$=$\frac{2\sqrt{5}}{5}-\frac{\sqrt{5}}{5}i$,
则复数z所对应的点$(\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5})$位于第四象限.
故选:D.
点评 本题考查了复数的运算性质、模的计算公式、几何意义,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.设函数f(x)是定义在R上的奇函数,当x∈(0,1]时f(x)=1+log2x.若对任意的x∈R都有f(x)=f(x+4),则f(2014)+f(2016)-2f(2015)=( )
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
13.随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也不断提高,安庆某社区居委会统计了2011至2015年每年春节期间外出旅游的家庭数,具体统计资料如表:
(Ⅰ)从这5年中随机抽取两年,求外出旅游的家庭至少有1年多于20个的概率;
(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\hat y=bx+a$,并判断它们之间是正相关还是负相关;
(Ⅲ)利用(Ⅱ)中所求出的回归直线方程估计该社区2016年在春节期间外出旅游的家庭数.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-{{\bar x}^2}}}}$,$\overline{y}=b\bar x+a$.
| 年份(x) | 2011 | 2012 | 2013 | 2014 | 2015 |
| 家庭数(y) | 6 | 10 | 16 | 22 | 26 |
(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\hat y=bx+a$,并判断它们之间是正相关还是负相关;
(Ⅲ)利用(Ⅱ)中所求出的回归直线方程估计该社区2016年在春节期间外出旅游的家庭数.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-{{\bar x}^2}}}}$,$\overline{y}=b\bar x+a$.