题目内容
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.
=(1,1),
=(
-sinBsinC,cosBcosC),且
⊥
.
(Ⅰ)求A的大小;
(Ⅱ)若a=1,b=
c.求S△ABC.
| m |
| n |
| ||
| 2 |
| m |
| n |
(Ⅰ)求A的大小;
(Ⅱ)若a=1,b=
| 3 |
(1)∵
⊥
,∴
-sinBsinC+cosBcosC=0,∴cos(B+C)=-
,即∴cosA=
.
∵A为△ABC的内角,∴0<A<π,∴A=
.
(Ⅱ)若a=1,b=
c.由余弦定理b2+c2-a2=2bc•cosA得 c2=1,
所以S△ABC=
bc•sinA=
c2=
.
| m |
| n |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
∵A为△ABC的内角,∴0<A<π,∴A=
| π |
| 6 |
(Ⅱ)若a=1,b=
| 3 |
所以S△ABC=
| 1 |
| 2 |
| ||
| 4 |
| ||
| 4 |
练习册系列答案
相关题目