题目内容
曲线y=2sin(x+
)cos(x-
)和直线y=
在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=( )
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| A.π | B.2π | C.3π | D.4π |
∵y=2sin(x+
)cos(x-
)
=2sin(x-
+
)cos(x-
)
=2cos(x-
)cos(x-
)
=cos[2(x-
)]+1
=cos(2x-
)+1
=sin2x+1,
若y=2sin(x+
)cos(x-
)=
,
∴2x=2kπ+
±
(k∈N),即x=kπ+
±
(k∈N),
则|P2P6|=2π.
故选B
| π |
| 4 |
| π |
| 4 |
=2sin(x-
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
=2cos(x-
| π |
| 4 |
| π |
| 4 |
=cos[2(x-
| π |
| 4 |
=cos(2x-
| π |
| 2 |
=sin2x+1,
若y=2sin(x+
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
∴2x=2kπ+
| 3π |
| 2 |
| π |
| 3 |
| 3π |
| 4 |
| π |
| 6 |
则|P2P6|=2π.
故选B
练习册系列答案
相关题目