题目内容

曲线y=2sin(x+
π
4
)cos(x-
π
4
)
和直线y=
1
2
在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=(  )
A.πB.2πC.3πD.4π
∵y=2sin(x+
π
4
)cos(x-
π
4

=2sin(x-
π
4
+
π
2
)cos(x-
π
4

=2cos(x-
π
4
)cos(x-
π
4

=cos[2(x-
π
4
)]+1
=cos(2x-
π
2
)+1
=sin2x+1,
若y=2sin(x+
π
4
)cos(x-
π
4
)=
1
2

∴2x=2kπ+
2
±
π
3
(k∈N),即x=kπ+
4
±
π
6
(k∈N),
则|P2P6|=2π.
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网