题目内容
若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是( )
| A.[-1,1] | B.[-
| C.[-1,
| D.[-
|
∵xy+yz+zx≤
+
+
=x2+y2+z2=1,
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
.
故选B.
| x2+y2 |
| 2 |
| y2+z2 |
| 2 |
| x2+z2 |
| 2 |
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
| 1 |
| 2 |
故选B.
练习册系列答案
相关题目
若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是( )
| A、[-1,1] | ||||
B、[-
| ||||
C、[-1,
| ||||
D、[-
|