题目内容
在平面直角坐标系
中,已知曲线
:
,在极坐标系(与平面直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍、
倍后得到曲线
,试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
(1)将曲线
(2)在曲线
(1)
,
;(2)当
时
.
试题分析:
解题思路:(1)利用直线与椭圆的参数方程与普通方程的互化公式求解即可;(II)利用点到直线的距离公式转化从三角函数求最值即可求解.
规律总结:参数方程与普通方程之间的互化,有公式可用,较简单;往往借助参数方程研究直线与椭圆的位置关系或求最值.
试题解析:(1)由题意知,直线
由题意知曲线
∴曲线
(2)设
当
此时
练习册系列答案
相关题目