题目内容

若函数f(x)=loga(x2-ax+3)在区间(-∞,
a
2
)上是减函数,则a的取值范围是(  )
A、(0,1)
B、(1,+∞)
C、(1,2
3
]
D、(1,2
3
考点:复合函数的单调性
专题:函数的性质及应用
分析:内层函数g(x)=x2-ax+3在区间(-∞,
a
2
)上是减函数,由复合函数的单调性知,外层函数y=logag(x)为增函数,得到a的初步范围,再由g(x)=x2-ax+3在区间(-∞,
a
2
)上大于0恒成立求出a的范围,取交集后求得实数a的取值范围.
解答: 解:由对数式的底数大于0且不等于1知,a>0且a≠1.
令g(x)=x2-ax+3,函数的对称轴方程为x=
a
2

函数g(x)=x2-ax+3在(-∞,
a
2
)上为减函数,在(
a
2
,+∞)上为增函数,
要使复合函数f(x)=loga(x2-ax+3)在区间(-∞,
a
2
)上是减函数,
则外层函数y=logag(x)为增函数,且同时满足内层函数g(x)=x2-ax+3在(-∞,
a
2
)上大于0恒成立,
a>1
g(
a
2
)=(
a
2
)2-a•
a
2
+3≥0

解得:1<a≤2
3

∴使函数f(x)=loga(x2-ax+3)在区间(-∞,
a
2
)上是减函数的a的取值范围是(1,2
3
].
故选:C.
点评:本题考查复合函数的单调性,复合的两个函数同增则增,同减则减,一增一减则减,注意对数函数的定义域是求解的前提,考查学生发现问题解决问题的能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网