题目内容

10.在直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上,若圆C上存在唯一一点M,使|MA|=2|MO|,则圆心C的非零横坐标是$\frac{12}{5}$.

分析 设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相切,根据两圆的半径长,能求出结果.

解答 解:设点M(x,y),由MA=2MO,知:$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,圆C上存在唯一一点M,使|MA|=2|MO|,
∴圆C与圆D相切,
∴|CD|=1或CD=3,
∵|CD|=$\sqrt{{a}^{2}+(2a-3)^{2}}$,∴解得a=0或a=$\frac{12}{5}$.
∴圆心C的非零横坐标是$\frac{12}{5}$.
故答案为:$\frac{12}{5}$.

点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网