题目内容
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下
列联表:
![]()
(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为
,试求随机变量
的分布列和数学期望;
(2)若在犯错误的概率不超过
的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的
的值应为多少?请说明理由.附:独立性检验统计量
,其中
.
独立性检验临界值表:
![]()
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)按分层抽样,8人中“有明显拖延症”6人,“无有明显拖延症”
人,随机变量
的可能取值为0,1,2.按超几何分布可求得分布列。(2)由题意可算得
,
,所以
.
试题解析:(Ⅰ)女生中从“有明显拖延症”里抽
人,“无有明显拖延症”里抽
人.
则随机变量
的可能取值为0,1,2.
∴
,
,
.
的分布列为:
| 0 | 1 | 2 |
|
|
|
|
.
(Ⅱ)由题设条件得
,
由临界值表可知:
,∴
.
【题目】(本小题满分12分)某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 | 不喜欢 | 合计 | |
大于40岁 | 20 | 5 | 25 |
20岁至40岁 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)