题目内容
1.已知函数f(x)=x2+ex-$\frac{1}{2}$(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(-∞,$\sqrt{e}$).分析 由题意可得,存在x<0使f(x)-g(-x)=0,即ex-$\frac{1}{2}$-ln(-x+a)=0在(-∞,0)上有解,从而化为函数m(x)=ex-$\frac{1}{2}$-ln(-x+a)在(-∞,0)上有零点,从而求解.
解答 解:若函数f(x)=x2+ex-$\frac{1}{2}$(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,
则等价为f(x)=g(-x),在x<0时,方程有解,
即x2+ex-$\frac{1}{2}$=x2+ln(-x+a),
即ex-$\frac{1}{2}$-ln(-x+a)=0在(-∞,0)上有解,
令m(x)=ex-$\frac{1}{2}$-ln(-x+a),
则m(x)=ex-$\frac{1}{2}$-ln(-x+a)在其定义域上是增函数,
且x→-∞时,m(x)<0,
若a≤0时,x→a时,m(x)>0,
故ex-$\frac{1}{2}$-ln(-x+a)=0在(-∞,0)上有解,
若a>0时,
则ex-$\frac{1}{2}$-ln(-x+a)=0在(-∞,0)上有解可化为
e0-$\frac{1}{2}$-ln(a)>0,
即lna<$\frac{1}{2}$,
故0<a<$\sqrt{e}$.
综上所述,a∈(-∞,$\sqrt{e}$).
故答案为:(-∞,$\sqrt{e}$).
点评 本题考查函数与方程的应用,根据函数的图象与方程的根及函数的零点之间的关系,进行转化是解决本题的关键.,综合性较强,难度较大.
练习册系列答案
相关题目
16.cos73°sin47°-cos163°sin43°=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
6.函数y=log${\;}_{\frac{1}{3}}$sin(2πx+$\frac{π}{4}$)的单调递减区间是( )
| A. | (-$\frac{3}{8}$+k,$\frac{1}{8}$+k)(k∈Z) | B. | (-$\frac{1}{8}$+k,$\frac{1}{8}$+k)(k∈Z) | C. | ($\frac{1}{8}$+k,$\frac{5}{8}$+k)(k∈Z) | D. | ($\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z) |
13.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,且f(2)=0,则不等式$\frac{2f(x)+f(-x)}{5(x-1)}$<0的解集是( )
| A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(1,2) | C. | (-2,1)∪(2,+∞) | D. | (-2,1)∪(1,2) |
11.已知f(x)=2sinωx(cosωx+sinωx)的图象在x∈[0,1]上恰有一个对称轴和一个对称中心,则实数ω的取值范围为( )
| A. | ($\frac{3π}{8}$,$\frac{5π}{8}$) | B. | [$\frac{3π}{8}$,$\frac{5π}{8}$) | C. | ($\frac{3π}{8}$,$\frac{5π}{8}$] | D. | [$\frac{3π}{8}$,$\frac{5π}{8}$] |