题目内容
在数列{an}中,a1=1,并且对于任意n∈N*,都有.an+1=
(1)证明数列{
}为等差数列,并求{an}的通项公式;
(2)求数列{anan+1}的前n项和Tn.
| an |
| 2an+1 |
(1)证明数列{
| 1 |
| an |
(2)求数列{anan+1}的前n项和Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得
=1,
=
=
+2,由此能证明{
}是首项为1,公差为2的等差数列,从而得到an=
.
(2)由anan+1=
•
=
(
-
),利用裂项求和法能求出数列{anan+1}的前n项和Tn.
| 1 |
| a1 |
| 1 |
| an+1 |
| 2an+1 |
| an |
| 1 |
| an |
| 1 |
| an |
| 1 |
| 2n-1 |
(2)由anan+1=
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
(1)证明:∵在数列{an}中,a1=1,
并且对于任意n∈N*,都有.an+1=
,
∴
=1,
=
=
+2,
∴{
}是首项为1,公差为2的等差数列,
∴
=1+(n-1)•2=2n-1,
∴an=
.
(2)解:∵anan+1=
•
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
.
并且对于任意n∈N*,都有.an+1=
| an |
| 2an+1 |
∴
| 1 |
| a1 |
| 1 |
| an+1 |
| 2an+1 |
| an |
| 1 |
| an |
∴{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| 2n-1 |
(2)解:∵anan+1=
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
函数f(x)=
的定义域为( )
| lg(2-x) | ||
|
| A、(-3,2) |
| B、[-3,2) |
| C、(-∞,-3) |
| D、(-∞,-3] |