题目内容
A.
B.
C.(0,2)
D.
(09年临沂一模文)(14分)
已知函数.
(1) 当a=-3时,求函数f(x)的极值;
(2) 若函数f(x)的图象与x轴有三个不同的交点,求a的取值范围。
已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(I)求f(x)的解析式;
(II)已知k的取值范围为[,+∞),则是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.
(本小题满分12分)
设二次函数f(x)=ax2+bx(a≠0)满足条件:
①f(-1+x)=f(-1-x);②函数f(x)的图象与直线y=x只有一个公共点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式>()2-tx在t∈[-2,2]时恒成立,求实数x的取值范围.
(本小题共13分)
已知函数,为函数的导函数.
(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(Ⅱ)若函数,求函数的单调区间.
设函数f (x)的图象与直线x =a,x =b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,]上的面积为(n∈N* ),(i)y=sin3x在[0,]上的面积为 ;(ii)y=sin(3x-π)+1在[,]上的面积为 .