题目内容
7.已知函数f(x)=|x+1|-2|x-a|,a∈R,若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.分析 化为分段函数可得三个交点,由面积公式可得a的不等式,解不等式可得.
解答 解:若a>-1,则f(x)=$\left\{\begin{array}{l}{x-1-2a,x<-1}\\{3x+1-2a,-1≤x≤a}\\{-x+1+2a,x>a}\end{array}\right.$,
∴函数f(x)的图象与x轴围成的三角形的三个顶点分别为A($\frac{2a-1}{3}$,0),B(2a+1,0),C(a,a+1),![]()
∴△ABC的面积S=$\frac{1}{2}$[2a+1-($\frac{2a-1}{3}$)](a+1)=$\frac{2}{3}$(a+1)2,故$\frac{2}{3}$(a+1)2>6,解得a>2或a<-4(舍),
若a=-1,则f(x)=|x+1|-2|x+1|=-|x+1|,此时不满足条件.
若a<-1,则f(x)=$\left\{\begin{array}{l}{x-1-2a,}&{x<a}\\{-3x+2a-1,}&{a≤x≤-1}\\{-x+1+2a,}&{x>-1}\end{array}\right.$,
函数f(x)的图象与x轴围成的三角形的三个顶点分别为A($\frac{2a-1}{3}$,0),B(2a+1,0),C(a,-a-1),![]()
∴△ABC的面积S=$\frac{1}{2}$[$\frac{2a-1}{3}$-(2a+1)](-a-1)=$\frac{2}{3}$(a+1)2,故$\frac{2}{3}$(a+1)2>6,解得a>2(舍)或x<-4,
综上a的取值范围为(-∞,-4)∪(2,+∞).
点评 本题考查绝对值函数,涉及三角形的公式,化为分段函数是解决问题的关键,注意要对a进行分类讨论.
练习册系列答案
相关题目
17.
某学校为了宣传环保知识,举办了“环保知识竞赛”活动
(1)若从全校高一至高三的学生答卷中抽取了100份,成绩统计结果如表所示,分别求出n,a,b的值;
(2)若对高一年级1000名学生的成绩进行统计,结果为如图频率分布直方图;若成绩在90分以上的同学授予“环保之星”,从成绩在[60,70]和(90,100]的同学中按分层抽样的方法选出7人,求从这7人中随机抽取2人,恰有1人是“环保之星”的概率.
(1)若从全校高一至高三的学生答卷中抽取了100份,成绩统计结果如表所示,分别求出n,a,b的值;
| 年级 | 抽取份数 | 优秀人数 | 优秀率 |
| 高一 | 40 | a | 0.5 |
| 高二 | n | 18 | 0.6 |
| 高三 | 30 | 21 | b |
15.已知A,B,C,D是复平面内的四个不同点,点A,B,C对应的复数分别是1+3i,-i,2+i,若$\overrightarrow{AD}=\overrightarrow{BC}$,则点D表示的复数是( )
| A. | 1-3i | B. | -3-i | C. | 3+5i | D. | 5+3i |
17.已知函数f(x)为偶函数,且当x≤0时,f(x)=$\frac{10+3x+{2}^{-x}}{7}$+|$\frac{10+3x-{2}^{-x}}{7}$|+m,若函数f(x)有4个零点,则实数m的取值范围为( )
| A. | (-$\frac{20}{7}$,-$\frac{8}{7}$) | B. | (-∞,-3)∪(-$\frac{8}{7}$,+∞) | C. | (-2,-$\frac{10}{7}$) | D. | (-∞,-2)∪(-$\frac{10}{7}$,+∞) |