题目内容

平面向量=(1,7),=(5,1),=(2,1),点Q是直线上的一个动点.

(1)当取到最小值时,求的坐标;

(2)当点Q满足(1)的条件和结论时,求cos∠AQB的值.

解:(1)∵Q为直线OP上的一个动点,

∴可设Q(2λ,λ),

=(2λ,λ).

=(1-2λ,7-λ),=(5-2λ,1-λ).

·=(1-2λ)(5-2λ)+(7-λ)(1-λ)=5λ2-20λ+12=5(λ-2)2-8.

∴当λ=2时, ·取得最小值,

此时=(4,2).

(2)由(1)得=(-3,5), =(1,-1),

∴cos∠AQB=cos〈,〉=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网