题目内容
从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],
事件A由4个基本事件组成,因而,P(A)=
=
.
思考
在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.
有放回地连续取出两件,其一切可能的结果有:(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a2),(b1,b1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],
事件B包含4个基本事件,因而,P(B)=
.
点评:(1)在连续两次取出过程中,(a1,b1)与(b1,a1)不是同一个基本事件,因为先后顺序不同.
(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.
练习册系列答案
相关题目