题目内容
【题目】在直角坐标系xOy中,直线l的参数方程为
(t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求
+
取值范围.
【答案】解:(Ⅰ)∵圆的极坐标方程为ρ=2cosθ, ∴圆C的直角坐标方程x2+y2﹣2x=0,
把
代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,
又直线l与圆C交于A,B两点,∴△=16cos2α﹣12>0,
解得:
或 ![]()
又由α∈[0,π),故α的取值范围
.
(Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 ,
则由参数t的几何意义可知:
,
又由
,∴
,
∴
的取值范围为
.
【解析】(Ⅰ)由圆的极坐标方程,能求出圆C的直角坐标方程,把
代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,由此利用根的判别式能求出α的取值范围. (Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 , 则由参数t的几何意义可知:
,由此能求出
的取值范围.
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况的优惠活动评价的
列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 |
|
|
|
对车辆状况不满意 |
|
|
|
合计 |
|
|
|
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送每张面额为
元,元,
元的 三种骑行券.用户每次使用
扫码用车后,都可获得一张骑行券.用户骑行一次获得
元券,获得
元券的概率分别是
,
,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.