题目内容
已知数列{Cn},其中Cn=2n+3n,且数列{Cn+1-PCn}为等比数列,则常数P= .
分析:由Cn=2n+3n求出数列{Cn+1-PCn}的通项公式,利用{Cn+1-PCn}为等比数列得到
=
,代值整理后即可求得P的值.
| C3-PC2 |
| C2-PC1 |
| C4-PC3 |
| C3-PC2 |
解答:解:由Cn=2n+3n,得:Cn+1=2n+1+3n+1,
∴Cn+1-PCn=2n+1+3n+1-P•2n-P•3n
=(2-P)•2n+(3-P)•3n.
∵数列{Cn+1-PCn}为等比数列,
∴
=
,即
=
.
整理得:P2-5P+6=0,解得:P=2或P=3.
故答案为:2或3.
∴Cn+1-PCn=2n+1+3n+1-P•2n-P•3n
=(2-P)•2n+(3-P)•3n.
∵数列{Cn+1-PCn}为等比数列,
∴
| C3-PC2 |
| C2-PC1 |
| C4-PC3 |
| C3-PC2 |
| (2-P)•22+(3-P)•32 |
| (2-P)•2+(3-P)•3 |
| (2-P)•23+(3-P)•33 |
| (2-P)•22+(3-P)•32 |
整理得:P2-5P+6=0,解得:P=2或P=3.
故答案为:2或3.
点评:本题考查了等比数列的通项公式,考查了计算能力,是基础题.
练习册系列答案
相关题目