题目内容
已知
≤log2x≤3,求函数y=(log2
)(log2
)的值域.
| 1 |
| 2 |
| x |
| 2 |
| x |
| 4 |
分析:由y=(log2
)(log2
)=(log2x-1)(log2x-2)=log22x-3log2x+2=(log2x-
)2-
,结合
≤log2x≤3,利用二次函数的性质可求
| x |
| 2 |
| x |
| 4 |
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
解答:解:∵y=(log2
)(log2
)=(log2x-1)(log2x-2)=log22x-3log2x+2=(log2x-
)2-
∵
≤log2x≤3,
∴当log2x=
时,ymin=-
当log2x=3时,ymax=2
∴函数的值域[-
,2]
| x |
| 2 |
| x |
| 4 |
| 3 |
| 2 |
| 1 |
| 4 |
∵
| 1 |
| 2 |
∴当log2x=
| 3 |
| 2 |
| 1 |
| 4 |
当log2x=3时,ymax=2
∴函数的值域[-
| 1 |
| 4 |
点评:本题主要考查了二次函数在闭区间上的值域的求解,解题的关键是熟练应用二次函数的性质
练习册系列答案
相关题目