题目内容
1.复数z=$\frac{5+i}{1+i}$在复平面上所对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数代数形式的乘除运算化简,求出z在复平面内对应点的坐标得答案.
解答 解:∵z=$\frac{5+i}{1+i}$=$\frac{(5+i)(1-i)}{(1+i)(1-i)}=\frac{6-4i}{2}=3-2i$,
∴复数z=$\frac{5+i}{1+i}$在复平面上所对应的点的坐标为(3,-2),位于第四象限.
故选:D.
点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
12.已知直线l1的倾斜角α1=30°,直线l1与l2平行,则直线l2的斜率k=( )
| A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
16.已知P为抛物线y=x2上的动点,A(0,$\frac{1}{4}$),B(1,2),则|PA|+|PB|的最小值为( )
| A. | $\frac{3}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{9}{4}$ | D. | $\frac{5}{2}$ |
6.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°、距灯塔68海里的M处,下午2时到达这座灯塔南偏东45°的N处,则该船航行的速度为(单位:海里/小时)( )
| A. | $\frac{17\sqrt{2}}{2}$ | B. | 34$\sqrt{6}$ | C. | $\frac{17\sqrt{6}}{2}$ | D. | 34$\sqrt{2}$ |