题目内容

6.在△ABC中,a,b,c分别是角A,B,C的对边,满足c=1,cosBsinC-(a-sinB)cosC=0.
(1)求C的大小;
(2)求a2+b2的最大值,并求取得最大值时角A,B的值.

分析 (1)利用两角和的正弦函数和诱导公式化简,结合正弦定理和同角的商数关系,即可求得C;
(2)由余弦定理以及基本不等式求解,最值即可求得.

解答 解:(1)cosBsinC-(a-sinB)cosC=0,
即有sinBcosC+cosBsinC=acosC,
即sin(B+C)=acosC,
即sinA=acosC.
由正弦定理可知:$\frac{a}{sinA}$=$\frac{c}{sinC}$=$\frac{1}{cosC}$,
由于c=1,则sinC=cosC,
即tanC=1,C是三角形内角,
∴C=$\frac{π}{4}$.
(2)由余弦定理可知:c2=a2+b2-2abcosC,
得1=a2+b2-$\sqrt{2}$ab,
又ab≤$\frac{{a}^{2}+{b}^{2}}{2}$,
∴(1-$\frac{\sqrt{2}}{2}$)(a2+b2)≤1,
即a2+b2≤2+$\sqrt{2}$.
当且仅当a=b即A=B=$\frac{3π}{8}$时,a2+b2取到最大值为2+$\sqrt{2}$.

点评 本题考查三角形的最值,余弦定理的应用,正弦定理的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网