题目内容
已知a
+a-
=3,求下列各式的值:
(1)a+a-1;
(2)
.
| 1 |
| 3 |
| 1 |
| 3 |
(1)a+a-1;
(2)
a
| ||||
a
|
考点:根式与分数指数幂的互化及其化简运算
专题:计算题
分析:(1)把要求的式子展开,结合两数和的平方公式和已知条件求解;
(2)由(1)中求得的值求a
-a-
的值,再由立方差公式求a
-a-
的值,则答案可求.
(2)由(1)中求得的值求a
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
解答:
解:(1)∵a
+a-
=3,
∴a+a-1=(a
)3+(a-
)3
=(a
+a-
)(a
+a-
-1)
=3[(a
+a-
)2-2-1]
=3×(32-3)=18;
(2)∵a+a-1=18,
∴(a
-a-
)2=a+a-1-2=18-2=16,
∴a
-a-
=±4.
a
-a-
=(a
-a-
)(a+a-1+1)
当a
-a-
=-4时,a
-a-
=-4×19=-76,
=
=19;
当a
-a-
=4时,a
-a-
=4×19=76,
=
=19.
∴
=19.
| 1 |
| 3 |
| 1 |
| 3 |
∴a+a-1=(a
| 1 |
| 3 |
| 1 |
| 3 |
=(a
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=3[(a
| 1 |
| 3 |
| 1 |
| 3 |
=3×(32-3)=18;
(2)∵a+a-1=18,
∴(a
| 1 |
| 2 |
| 1 |
| 2 |
∴a
| 1 |
| 2 |
| 1 |
| 2 |
a
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当a
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
a
| ||||
a
|
| -76 |
| -4 |
当a
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
a
| ||||
a
|
| 76 |
| 4 |
∴
a
| ||||
a
|
点评:本题考查根式与分数指数幂的互化及其化简运算,考查了立方和与立方差公式,是基础题.
练习册系列答案
相关题目