题目内容

过椭圆左焦点F,倾斜角为
π
3
的直线交椭圆于A,B两点,若|FA|=2|FB|,则椭圆的离心率为______.
设准线与x轴交点为M,过A、B作准线的垂线,垂足分别为D、C,过B作BH⊥AD,垂足为H,交x轴于E.
设|AB|=3t,因为|FA|=2|FB|,则|BF|=t,|AF|=2t,
因为AB倾斜角为60°,所以∠ABH=30°,则|AH|=
1
2
|AB|=
3
2
t,
根据椭圆第二定义,可得|AH|=|AD|-|BC|=
2t
e
-
t
e
=
t
e

3
2
t=
t
e

∴e=
2
3

故答案为:
2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网