题目内容
1.设三棱柱ABC-A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2$\sqrt{2}$,且三棱柱的所有顶点都在同一球面上,则该球的表面积是( )| A. | 4π | B. | 8π | C. | 12π | D. | 16π |
分析 根据题意,可将棱柱ABC-A1B1C1补成长方体,长方体的对角线即为球的直径,从而可求球的表面积.
解答 解:∵三棱柱ABC-A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2$\sqrt{2}$,
∴可将棱柱ABC-AA1B1C1补成长方体,长方体的对角线$\sqrt{4+4+8}$=4,即为球的直径,
∴球的直径为4,
∴球的表面积为4π×22=16π,
故选:D.
点评 本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
6.
某几何体的三视图如图所示,正视图是面积为$\frac{9}{2}$π的半圆,俯视图是正三角形,此几何体的体积为( )
| A. | $\frac{9\sqrt{3}}{2}$π | B. | 9$\sqrt{3}$π | C. | $\frac{9\sqrt{3}}{4}$π | D. | 3$\sqrt{3}$π |
13.
一机器元件的三视图及尺寸如图所示(单位:dm),则该组合体的体积为( )
| A. | 80dm3 | B. | 88dm3 | C. | 96dm3 | D. | 112dm3 |