题目内容
若等比数列{an}满足a2a4=,则a1a5= .
已知椭圆C的上、下顶点分别为B1、B2,左、右焦点分别为F1、F2,若四边形B1F1B2F2是正方形,则此椭圆的离心率e等于( )
A. B.
C. D.
如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( )
A.椭圆 B.双曲线
C.抛物线 D.圆
如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )
A. B. C. D.
在直角坐标系xOy上取两个定点A1(-2,0)、A2(2,0),再取两个动点N1(0,m)、N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知F2(1,0),设直线l:y=kx+m与(1)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角为α、β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
设Sn为等比数列{an}的前n项和,8a2+a5=0,则等于( )
(A)-11 (B)-8 (C)5 (D)11
设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )
(A)y=cos 2x,x∈R
(B)y=log2|x|,x∈R且x≠0
(C)y=,x∈R
(D)y=x3+1,x∈R