题目内容

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形,
(1)证明直线BC∥EF;
(2)求棱锥F-OBED的体积.
(1)证明:设G是线段DA与线段EB延长线的交点,
由于△OAB与△ODE都是正三角形,
所以OBDE,OG=OD=2,
同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,
又由于G和G′都在线段DA的延长线上,所以G与G′重合.
在△GED和△GFD中,由OBDE和OCDF,
可知B,C分别是GE和GF的中点,
所以BC是△GEF的中位线,
故BC∥EF。
(2)解:由OB=1,OE=2,∠EOB=60°,知
而△OED是边长为2的正三角形,故
所以
过点F作FQ⊥AD,交AD于点Q,
由平面ABED⊥平面ACFD知,FQ就是四棱锥F-OBED的高,且
所以
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网