题目内容
(1)计算:[(3| 3 |
| 8 |
| 2 |
| 3 |
| 4 |
| 9 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)化简:
a
| |||||||
4b
|
| 2 |
| 3 |
2
| |||
| a |
| ||||||||
|
分析:(1)题目中给出的是分数指数幂,先看其是否符合运算法则的条件,如符合用法则进行下去,如不符合应再创设条件去求.
(2)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算.
(2)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算.
解答:解:(1)原式=[(
)
-(
)
+(
)
÷
×
]÷(
)
=[
-
+25×
×
]÷
=(-
+2)×2=
;
(2)原式=
÷
×
a
(a
-2b
)×
×
=a
×a×a
=a2
| 8 |
| 27 |
| 2 |
| 3 |
| 49 |
| 9 |
| 1 |
| 2 |
| 1000 |
| 8 |
| 2 |
| 3 |
| 50 |
4
| ||
| 10 |
| 625 |
| 10000 |
| 1 |
| 4 |
=[
| 4 |
| 9 |
| 7 |
| 3 |
| 1 | ||
5
|
4
| ||
| 10 |
| 1 |
| 2 |
| 17 |
| 9 |
| 2 |
| 9 |
(2)原式=
a
| ||||||||
(a
|
a
| ||||
| a |
(a•a
| ||||||
(a
|
a
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| a | ||||
a
|
a
| ||
a
|
| 1 |
| 3 |
| 2 |
| 3 |
点评:本题考查分数指数幂与根式的化简计算,关键是要灵活运用运算法则.
练习册系列答案
相关题目