题目内容
(1)求证:平面
(2)求三棱锥
解:(1)直三棱柱ABC—A1B1C1中,BB1⊥底面ABC,
则BB1⊥AB,BB1⊥BC,
又由于AC=BC=BB1=1,AB1=
,则AB=
,
则由AC2+BC2=AB2可知,AC⊥BC,
又由上BB1⊥底面ABC可知BB1⊥AC,则AC⊥平面B1CB,
所以有平面AB1C⊥平面B1CB;-
(2)三棱锥A1—AB1C的体积
.
则BB1⊥AB,BB1⊥BC,
又由于AC=BC=BB1=1,AB1=
则由AC2+BC2=AB2可知,AC⊥BC,
又由上BB1⊥底面ABC可知BB1⊥AC,则AC⊥平面B1CB,
所以有平面AB1C⊥平面B1CB;-
(2)三棱锥A1—AB1C的体积
练习册系列答案
相关题目