题目内容

如图,已知曲线C:(a>0),曲线C与x轴相交于A、B两点,直线l过点B且与x轴垂直,点S是直线l上异于点B的任意一点,线段SA与曲线C交于点T,线段TB与以线段SB为直径的圆相交于点M.
(I)若点T与点M重合,求的值;
(II)若点O、M、S三点共线,求曲线C的方程.

【答案】分析:(I)设T(x,y),S(a,y1),由点A,T,S共线,确定直线方程,求得S的坐标,利用点T与点M重合时,有BT⊥AS,kSA•kBT=-1,得a的值,再利用=AB2,即可求得结论;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS,由此可求a的值,从而可得曲线C的方程.
解答:解:(I)设T(x,y),S(a,y1),则,所以
由点A,T,S共线有:=,得:,即S(a,
当点T与点M重合时,有BT⊥AS,kSA•kBT=×=-1,得a=1.
=AB2=(2a)2=4;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS
∴kSO•kBT=×=-1,∴a2=2
∴所求曲线C的方程为
点评:本题考查椭圆的标准方程,考查向量知识的运用,解题的关键是确定a的值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网