题目内容
已知△ABC内接于以O为圆心,1为半径的圆,且3
+4
+5
=
,则
•
=
| OA |
| OB |
| OC |
| 0 |
| OC |
| AB |
-
| 1 |
| 5 |
-
.| 1 |
| 5 |
分析:利用向量条件先求得
•
=0,再把所求式转化为(-
-
)•(
-
),利用数量积公式,即可得到结论.
| OA |
| OB |
| 3 |
| 5 |
| OA |
| 4 |
| 5 |
| OB |
| OB |
| OA |
解答:解:由题意,|OA|=|OB|=|OC|=1
∵3
+4
+5
=
,
∴3
+4
=-5
,两边平方得 9+24
•
+16=25,
∴
•
=0
∵3
+4
=-5
∴
=-
-
∴
•
=(-
-
)•(
-
)=
-
=-
故答案为:-
∵3
| OA |
| OB |
| OC |
| 0 |
∴3
| OA |
| OB |
| OC |
| OA |
| OB |
∴
| OA |
| OB |
∵3
| OA |
| OB |
| OC |
∴
| OC |
| 3 |
| 5 |
| OA |
| 4 |
| 5 |
| OB |
∴
| OC |
| AB |
| 3 |
| 5 |
| OA |
| 4 |
| 5 |
| OB |
| OB |
| OA |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
故答案为:-
| 1 |
| 5 |
点评:本题考查向量的线性运算,考查向量的数量积,考查向量的垂直,解题的关键是把所求式转化为(-
-
)•(
-
),利用数量积公式求解.
| 3 |
| 5 |
| OA |
| 4 |
| 5 |
| OB |
| OB |
| OA |
练习册系列答案
相关题目