题目内容
(本小题14分)已知点
,直线
,
为平面上的动点,过点
作直线
的垂线,垂足为点
,且
.
(1)求动点
的轨迹
的方程;
(2)轨迹
上是否存在一点
使得过
的切线
与直线
平行?若存在,求出
的方程,并求出它与
的距离;若不存在,请说明理由.
【答案】
19.解:(1)设点
,则
,
![]()
由
得 ![]()
整理得
…………………5分
(2)假设轨迹
上存在一点
使得过
的切线
与直线
平行.
由
得
,所以
,
…………………7分
由假设可知,直线
的斜率
…………………8分
又直线
的斜率等于1,故
, 即
,
…………………9分
代入
得
…………………10分
因此点
的坐标为
,直线
的方程为
…………………12分
直线
与直线
的距离
. …………………14分
【解析】略
练习册系列答案
相关题目