题目内容

已知O为△ABC所在平面内一点,满足数学公式,则点O是△ABC的


  1. A.
    外心
  2. B.
    内心
  3. C.
    垂心
  4. D.
    重心
C
分析:根据向量的减法分别用表示,利用数量积运算和题意代入式子进行化简,证出OC⊥AB,同理可得OB⊥AC,OA⊥BC,即证出O是△ABC的垂心.
解答:设,则
由题可知,
∴||2+||2=||2+||2,化简可得=,即()•=0,
,∴,即OC⊥AB.
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故选C.
点评:本题考查了向量在几何中应用,主要利用向量的线性运算以及数量积进行化简证明,特别证明垂直主要根据题意构造向量利用数量积为零进行证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网