题目内容

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A.
1
2
B.
2
2
C.
3
3
D.以上均不对
作PT垂直椭圆准线l于T
则由椭圆第二定义
|PF1|:|PT|=e
又|PF1|:|PF2|=e
故|PT|=|PF2|
由抛物线定义知l为抛物线准线
故F1到l的距离等于F1到F2的距离,
即(-c)-(-
a2
c
)=c-(-c)
得e=
c
a
3
3

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网