题目内容
(本小题满分12分)如图,椭圆
的离心率为
,直线
和
所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线
与椭圆M有两个不同的交点
与矩形ABCD有两个不同的交点
.求
的最大值及取得最大值时m的值.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线
(I)
.(II)
时,
取得最大值
.
试题分析:(1)根据已知中的离心率和矩形的面积得到a,b,c的方程,进而求解椭圆方程。
(2)将已知中的直线方程与椭圆方程联立方程组,结合韦达定理得到根与系数的关系,那么得到弦长公式,同时以及得到点S,T的坐标,进而得到比值。
(I)
矩形ABCD面积为8,即
由①②解得:
(II)
设
当
当
其中
点评:解决该试题的关键是运用代数的方法来解决解析几何问题时,解析几何的本质。能结合椭圆的性质得到其方程,并联立方程组,结合韦达定理和判别式的到比值。
练习册系列答案
相关题目