题目内容

等差数列{an}前n项和为Sn,且S5=45,S6=60.
(1)求{an}的通项公式an
(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
1 bn
}的前n项和Tn
分析:(1)利用等差数列的前n项和公式即可得出;
(2)利用“累加求和”、裂项求和、等差数列的前n项和公式即可得出.
解答:解:(1)设等差数列{an}的公差为d,∵S5=45,S6=60,∴
5a1+
5×4
2
d=45
6a1+
6×5
2
d=60
,解得
a1=5
d=2
.∴an=5+(n-1)×2=2n+3.
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=
n(n-1)
2
+3n

=n2+2n.
1
bn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+
…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2(n+1)
-
1
2(n+2)
点评:熟练掌握等差数列的前n项和公式、“累加求和”、裂项求和等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网