题目内容
等差数列{an}前n项和为Sn,且S5=45,S6=60.
(1)求{an}的通项公式an;
(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
}的前n项和Tn.
(1)求{an}的通项公式an;
(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
| 1 | bn |
分析:(1)利用等差数列的前n项和公式即可得出;
(2)利用“累加求和”、裂项求和、等差数列的前n项和公式即可得出.
(2)利用“累加求和”、裂项求和、等差数列的前n项和公式即可得出.
解答:解:(1)设等差数列{an}的公差为d,∵S5=45,S6=60,∴
,解得
.∴an=5+(n-1)×2=2n+3.
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=2×
+3n
=n2+2n.
∴
=
=
(
-
).
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
=
-
-
.
|
|
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=2×
| n(n-1) |
| 2 |
=n2+2n.
∴
| 1 |
| bn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2(n+1) |
| 1 |
| 2(n+2) |
点评:熟练掌握等差数列的前n项和公式、“累加求和”、裂项求和等是解题的关键.
练习册系列答案
相关题目