题目内容
已知等差数列{an}前n项和为Sn,并且
=
,那么
=
.
| S2 |
| S7 |
| 1 |
| 6 |
| S6 |
| S11 |
| 3 |
| 8 |
| 3 |
| 8 |
分析:设出等差数列的首项和公比,由
=
得到首项和公比的关系,把S6,S11都用公比表示,则答案可求.
| S2 |
| S7 |
| 1 |
| 6 |
解答:解:设等差数列{an}的首项为a1,公差为d,
由
=
,得
=
,∴a1=3d.
则
=
=
=
=
.
故答案为:
.
由
| S2 |
| S7 |
| 1 |
| 6 |
| 2a1+d |
| 7a1+21d |
| 1 |
| 6 |
则
| S6 |
| S11 |
6a1+
| ||
11a1+
|
| 6a1+15d |
| 11a1+55d |
| 33d |
| 88d |
| 3 |
| 8 |
故答案为:
| 3 |
| 8 |
点评:本题考查了等差数列的通项公式,考查了等差数列的性质,训练了等差数列前n项和的应用,是中档题.
练习册系列答案
相关题目